

2. Sketch graphs of these three quadratic relations on the same set of axes.

a)  $y = (x - 9)^2$       b)  $y = (x + 2)^2$   
c)  $y = (x - 5)^2$

3. Sketch graphs of these three quadratic relations on the same set of axes.

a)  $y = x^2 + 8$       b)  $y = x^2 - 5$   
c)  $y = x^2 - 10$

4. Sketch the graph of each parabola. Label at least three points on the parabola. Describe the transformation from the graph of  $y = x^2$ .

c)  $y = x^2 - 5$       d)  $y = (x - 8)^2$   
e)  $y = -\frac{1}{2}x^2$   
g)  $y = x^2 + 0.5$

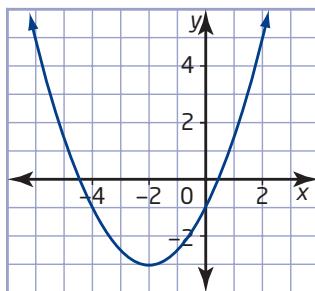
### Connect and Apply

6. Write an equation for the quadratic relation that results from each transformation.

a) The graph of  $y = x^2$  is translated 6 units upward.  
b) The graph of  $y = x^2$  is translated 4 units downward.

7. Write an equation for the quadratic relation that results from each transformation.

a) The graph of  $y = x^2$  is translated 7 units to the left.  
b) The graph of  $y = x^2$  is translated 5 units to the right.  
c) The graph of  $y = x^2$  is translated 8 units to the left.  
d) The graph of  $y = x^2$  is translated 3 units to the right.


## Communicate Your Understanding

**C1** Why is the vertical line through the vertex called the axis of symmetry? Illustrate with an example.

**C2** When describing the transformation from  $y = x^2$  to  $y = 2x^2$ , you say that it has been stretched vertically by a factor of 2, instead of compressed horizontally. Explain why vertical stretches are used in descriptions.

**C3** Which equation is correct for the graph shown? Explain your reasoning.

**A**  $y = (x + 2)^2 - 3$   
**B**  $y = \frac{1}{3}(x + 2)^2 - 3$   
**C**  $y = \frac{1}{2}(x + 2)^2 - 3$   
**D**  $y = -2(x + 2)^2 - 3$



## Practise

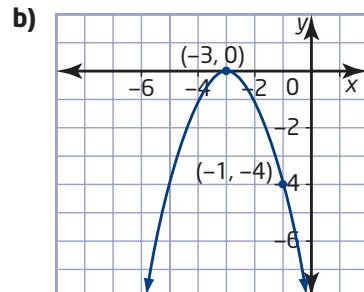
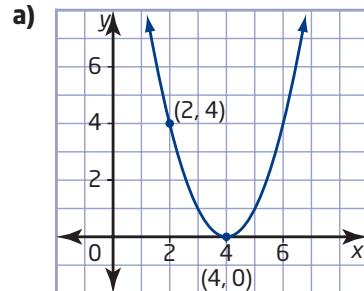
For help with questions 1 and 2, see Example 1.

1. Copy and complete the table for each parabola. Replace the heading for the second column with the equation for the parabola.

| Property                                            | $y = a(x - h)^2 + k$ |
|-----------------------------------------------------|----------------------|
| Vertex                                              |                      |
| Axis of symmetry                                    |                      |
| Stretch or compression factor relative to $y = x^2$ |                      |
| Direction of opening                                |                      |
| Values $x$ may take                                 |                      |
| Values $y$ may take                                 |                      |

**a)**  $y = (x - 4)^2$   
**b)**  $y = (x - 2)^2 - 4$   
**c)**  $y = (x + 3)^2 - 2$   
**d)**  $y = \frac{1}{2}(x + 1)^2 + 5$   
**e)**  $y = (x - 7)^2 - 3$   
**f)**  $y = -(x - 1)^2 + 7$   
**g)**  $y = 2(x - 4)^2 - 5$   
**h)**  $y = -3(x + 4)^2 - 2$

2. Sketch each parabola in question 1.



For help with questions 3 to 7, see Example 2.

3. Write an equation for the parabola with vertex at  $(2, 3)$ , opening upward, and with no vertical stretch.

4. Write an equation for the parabola with vertex at  $(-3, 0)$ , opening downward, and with a vertical stretch of factor 2.

5. Write an equation for the parabola with vertex at  $(4, -1)$ , opening upward, and with a vertical compression of factor 0.3.

6. Write an equation for each parabola.

