

Thread 2, Quiz 2 – Quadratic Equations**K 7****A 7**

Marks 1. Re-write the equation below in the form $y = a(x - h)^2 + k$ by completing the square.

Then, state the maximum or minimum value of the relation.

$$y = x^2 - 8x + 13$$

$$\begin{aligned} y &= x^2 - 8x + 16 - 16 + 13 \\ y &= (x - 4)^2 - 16 + 13 \\ y &= (x - 4)^2 - 3 \end{aligned}$$

K 3

- opens up
- minimum value of -3

2. The cost, in dollars, of operating an appliance is given by the formula $C = 2t^2 - 24t + 150$ where t is the time, in months, the appliance is running.

What is the minimum cost of running the appliance?

$$\begin{aligned} C &= 2t^2 - 24t + 150 \\ C &= 2(t - 12t) + 150 \\ C &= 2(t - 12t + 36 - 36) + 150 \\ C &= 2((t - 6)^2 - 36) + 150 \\ C &= 2(t - 6)^2 - 72 + 150 \\ C &= 2(t - 6)^2 + 78 \end{aligned}$$

A 4

- opens up
- minimum value of 78

∴ the minimum cost of running the appliance is \$78.

Marks

3. What are the x intercepts of this quadratic relation?

$$y = (2x + 1)(2x - 7)$$

$$0 = (2x + 1)(2x - 7)$$

$$\begin{array}{l} \downarrow \\ 2x + 1 = 0 \\ 2x = -1 \\ x = -\frac{1}{2} \end{array} \qquad \qquad \begin{array}{l} \downarrow \\ 2x - 7 = 0 \\ 2x = 7 \\ x = \frac{7}{2} \end{array}$$

K 2

\therefore the x -intercepts are $-\frac{1}{2}$ and $\frac{7}{2}$.

4. What are the x intercepts of this quadratic relation?

$$y = x^2 + 8x + 12$$

$$y = (x + 6)(x + 2)$$

$$0 = (x + 6)(x + 2)$$

$$\begin{array}{l} \downarrow \\ x + 6 = 0 \\ x = -6 \end{array} \qquad \qquad \begin{array}{l} \downarrow \\ x + 2 = 0 \\ x = -2 \end{array}$$

K 2

\therefore the x -intercepts are -6 and -2 .

5. The path of a toy rocket is defined by the relation $y = -3x^2 + 11x + 4$ where x is the horizontal distance, in metres, travelled and y is the height, in metres, above the ground.

How far has the rocket travelled, horizontally, when it hits the ground?

A 3

$$y = -3x^2 + 11x + 4$$

$$y = -(3x^2 - 11x - 4)$$

$$\overline{3 \quad \cancel{-11} \quad 1}$$

$$1 \quad \cancel{-4}$$

$$y = -(3x + 1)(x - 4)$$

$$0 = -(3x + 1)(x - 4)$$

$$x = -\frac{1}{3} \quad x = 4$$

we discard the negative root since the rocket would not travel backwards
 \therefore the rocket travels 4 m horizontally