

Opportunity to Learn – Standard Form to Vertex Form

1. Rewrite each relation in the form $y = a(x - h)^2 + k$ by completing the square.

As you go, check that your work is correct using Desmos, by graphing both the original relation and the relation in $y = a(x - h)^2 + k$ form.

a. $y = x^2 + 6x - 1$

$$\begin{aligned} y &= x^2 + 6x + 9 - 9 - 1 \\ y &= (x+3)^2 - 10 \end{aligned}$$

$$\begin{aligned} &\left(\frac{6}{2}\right)^2 \\ &= 3^2 \\ &= 9 \end{aligned}$$

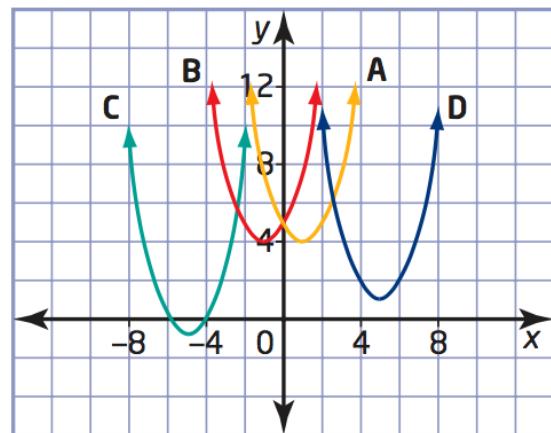
b. $y = x^2 + 10x + 20$

$$\begin{aligned} y &= x^2 + 10x + 25 - 25 + 20 \\ y &= (x+5)^2 - 5 \end{aligned}$$

c. $y = x^2 - 6x - 4$

$$\begin{aligned} y &= x^2 - 6x + 9 - 9 - 4 \\ y &= (x-3)^2 - 13 \end{aligned}$$

d. $y = x^2 - 8x - 2$


$$\begin{aligned} y &= x^2 - 8x + 16 - 16 - 2 \\ y &= (x-4)^2 - 18 \end{aligned}$$

e. $y = x^2 - 12x + 8$

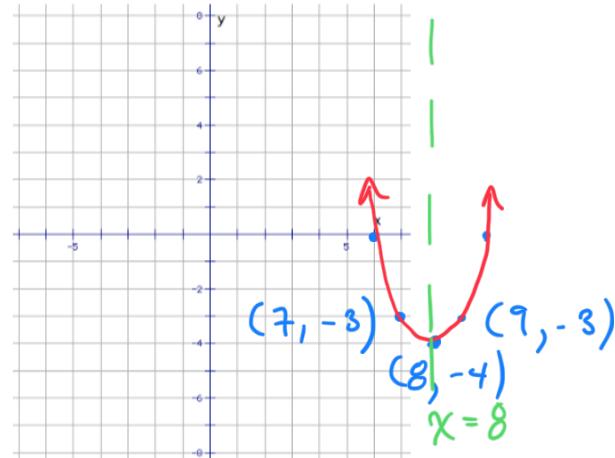
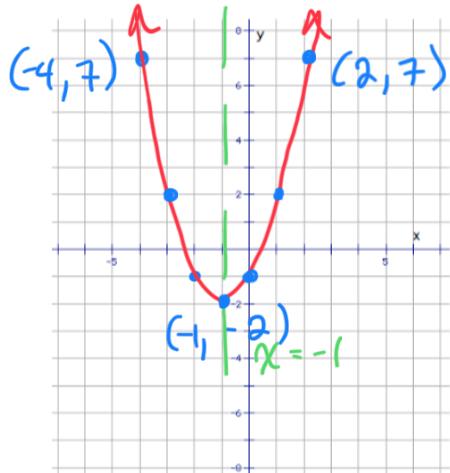
$$\begin{aligned} y &= x^2 - 12x + 36 - 36 + 8 \\ y &= (x-6)^2 - 28 \end{aligned}$$

2. Match each graph with the appropriate equation by filling the blank (A, B, C, or D).

Provide point-form explanations for how you determined what equation matches each graph.

$y = (x - 5)^2 + 1$ $y = (x - 1)^2 + 4$ $y = (x + 1)^2 + 4$ $y = (x + 5)^2 - 1$
 largest shift to right process of elimination only equation with one unit shift left only equation with shift down

3. Find the vertex of each parabola.



Sketch the graph, labelling the vertex, the axis of symmetry, and two other points on the curve.

a. $y = x^2 + 2x - 1$

$$y = x^2 + 2x - 1$$

b. $y = x^2 - 16x + 60$

$$\begin{aligned} y &= x^2 - 16x + 60 \\ y &= (x - 8)^2 - 64 + 60 \\ y &= (x - 8)^2 - 4 \end{aligned}$$

4. The path of a ball is modeled by the equation $y = -x^2 + 4x + 1$, where x is the horizontal distance travelled, in metres, and y is the height of the ball above the ground, in metres.

What is the maximum height of the ball, and at what horizontal distance does it occur?

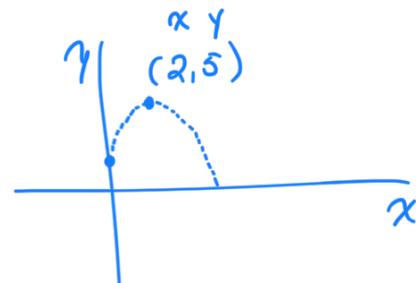
HINT: Consider the vertex...

$$y = -x^2 + 4x + 1 \quad \text{Factor out the } -1$$

$$y = -(x^2 - 4x - 1)$$

$$y = -(x^2 - 4x + 4 - 4 - 1)$$

$$y = -((x-2)^2 - 4 - 1)$$


$$y = -((x-2)^2 - 5)$$

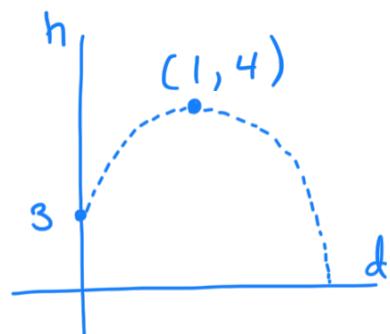
$$y = -(x-2)^2 + 5$$

Distribute the -1 again!

vertex is $(2, 5)$

parabola opens down

\therefore , the maximum height of the ball is 5 metres and this occurs after the ball has travelled 2 metres horizontally.


5. A diver dives from a 3-m board at a swimming pool.

Her height, h , in metres above the surface of the pool, is related to her horizontal distance from the diving board, d , in metres, by the relation

$$h = -d^2 + 2d + 3.$$

What is the diver's maximum height?

$$\begin{aligned}
 h &= -d^2 + 2d + 3 \\
 h &= -(d^2 - 2d - 3) \\
 h &= -(d^2 - 2d + 1 - 1 - 3) \\
 h &= -((d-1)^2 - 1 - 3) \\
 h &= -((d-1)^2 - 4) \\
 h &= -(d-1)^2 + 4
 \end{aligned}$$

\therefore the diver's maximum height is 4 metres above the surface of the pool.