

OTL – Solving Quadratic Equations by Factoring

1. Find the roots of each quadratic equation.

- $0 = (x + 5)(x + 2)$
- $0 = (x - 3)(x + 4)$
- $0 = (x - 1)(x - 7)$
- $0 = x(x + 9)$
- $0 = (2x + 3)(3x - 5)$

a) $0 = (x + 5)(x + 2)$

$$\begin{array}{l} \swarrow \qquad \searrow \\ x + 5 = 0 \qquad x + 2 = 0 \\ x + 5 - 5 = -5 \qquad x + 2 - 2 = -2 \\ x = -5 \qquad x = -2 \end{array}$$

\therefore roots are $x = -5$ or $x = -2$

b) $0 = (x - 3)(x + 4)$

$$\begin{array}{l} \swarrow \qquad \searrow \\ x - 3 = 0 \qquad x + 4 = 0 \\ x - 3 + 3 = +3 \qquad x + 4 - 4 = -4 \\ x = 3 \qquad x = -4 \end{array}$$

\therefore roots are $x = 3$ or $x = -4$

c) $0 = (x - 1)(x - 7)$

$$\begin{array}{l} \swarrow \qquad \searrow \\ x - 1 = 0 \qquad x - 7 = 0 \\ x - 1 + 1 = 1 \qquad x - 7 + 7 = 7 \\ x = 1 \qquad x = 7 \end{array}$$

\therefore roots are $x = 1$ or $x = 7$

d) $0 = x(x + 9)$

$$\begin{array}{l} \swarrow \qquad \searrow \\ x = 0 \qquad x + 9 = 0 \\ x + 9 - 9 = -9 \\ x = -9 \end{array}$$

\therefore roots are $x = 0$ or $x = -9$

e) $0 = (2x + 3)(3x - 5)$

$$\begin{array}{l} \swarrow \qquad \searrow \\ 2x + 3 = 0 \qquad 3x - 5 = 0 \\ 2x + 3 - 3 = -3 \qquad 3x - 5 + 5 = 5 \\ 2x = -3 \qquad 3x = 5 \\ \frac{2x}{2} = \frac{-3}{2} \qquad \frac{3x}{3} = \frac{5}{3} \\ x = -\frac{3}{2} \qquad x = \frac{5}{3} \end{array}$$

\therefore roots are $x = -\frac{3}{2}$ or $x = \frac{5}{3}$

2. Find the roots of each quadratic equation.

- a. $0 = x^2 + 8x + 12$
- b. $0 = x^2 + 3x$
- c. $x^2 + 5x = -4$
- d. $x^2 = 7x$
- e. $3x^2 + 24x + 45 = 0$

a) $0 = x^2 + 8x + 12$
 $0 = (x+6)(x+2)$

\therefore roots are $x = -6$
 $\text{or } x = -2$

b) $0 = x^2 + 3x$
 $0 = x(x+3)$
 $\downarrow \quad \uparrow$
 $x=0 \quad x+3=0$
 $x+3-3=-3$
 $x=-3$

\therefore roots are $x = 0$
 $\text{or } x = -3$

c) $x^2 + 5x = -4$
 $x^2 + 5x + 4 = -4 + 4$
 $x^2 + 5x + 4 = 0$
 $(x+4)(x+1) = 0$

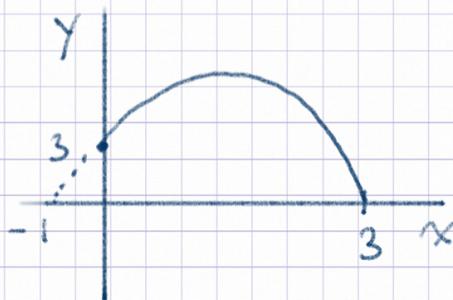
\therefore roots are
 $x = -4$ or
 $x = -1$.

d) $x^2 = 7x$
 $x^2 - 7x = 7x - 7x$
 $x^2 - 7x = 0$
 $x(x-7) = 0$
 $\downarrow \quad \downarrow$
 $x=0 \quad x-7=0$
 $x-7+7=7$
 $x=7$

\therefore roots are $x = 0$
 $\text{or } x = 7$

e) $3x^2 + 24x + 45 = 0$

$$\frac{3x^2 + 24x + 45}{3} = \frac{0}{3}$$


$$x^2 + 8x + 15 = 0$$

 $(x+5)(x+3) = 0$

\therefore roots are
 $x = -5$ or
 $x = -3$

3. A basketball is tossed from the top of a 3-m wall.

The path of the basketball is defined by the relation $y = -x^2 + 2x + 3$, where x represents the horizontal distance travelled, in metres, and y represents the height, in metres, above the ground.

How far has the basketball travelled horizontally when it lands on the ground?

"lands on the ground"
implies we need
to find the roots...
ie. x -values at
 $y = 0$

$$0 = -x^2 + 2x + 3$$

$$\frac{0}{-1} = \frac{-x^2 + 2x + 3}{-1}$$

$$0 = x^2 - 2x - 3$$

$$0 = (x + 1)(x - 3)$$

\therefore roots are $x = -1$

$$\text{or } x = 3$$

\therefore the basketball
has travelled
3 m horizontally

4. A rectangle has dimensions $x + 10$ and $2x - 3$.

Determine the value of x that gives an area of 54 cm^2 .

Remember that the area of a rectangle is defined by $A = lw$.

$$x + 10$$

$$2x - 3$$

OK... $A = lw$.

Let's use the info given and substitute g into the area formula.

$$54 = (x + 10)(2x - 3)$$

$$54 = 2x^2 - 3x + 20x - 30$$

$$54 = 2x^2 + 17x - 30$$

$$54 - 54 = 2x^2 + 17x - 30 - 54$$

$$0 = 2x^2 + 17x - 84$$

Now, factor to find intercepts or roots.

$$-168$$

$$0 = 2x^2 - 7x + 24$$

$$-7, 24$$

$$0 = x(2x - 7) + 12(2x - 7)$$

$$0 = (2x - 7)(x + 12)$$

↙

$$\begin{aligned} 2x - 7 &= 0 \\ 2x - 7 + 7 &= 7 \\ 2x &= 7 \\ \frac{2x}{2} &= \frac{7}{2} \\ x &= \frac{7}{2} \\ x &= 3.5 \end{aligned}$$

↗

$$\begin{aligned} x + 12 &= 0 \\ x + 12 - 12 &= -12 \\ x &= -12 \end{aligned}$$

∴ roots are $x = 3.5$
or $x = -12$

Dimensions of a rectangle cannot be negative though.

discard this root

∴ $x = 3.5$ ∴ length is 13.5 m.
and width is 4 m

Check: $(13.5)(4) = 54$

5. Write a quadratic equation, in standard form, that has roots of 5 and -8.

answers may vary

$$y = a(x - r)(x - s)$$

Let $a = 1$.

$$y = 1(x - 5)(x - (-8))$$

$$y = (x - 5)(x + 8)$$

factored or intercepts form

$$y = x^2 + 9x - 5x - 40$$

$$y = x^2 + 3x - 40$$

expand to get to standard form.

6. Find the x -intercepts for each quadratic relation.

- $y = x^2 + 5x + 6$
- $y = x^2 + 9x$
- $y = x^2 + 9x - 36$
- $y = 4x^2 + 20x + 9$
- $y = 3x^2 - 13x + 4$

a) $y = x^2 + 5x + 6$

$$0 = (x+2)(x+3)$$

$\therefore x$ -intercepts
are $x = -2$ or
 $x = -3$

b) $y = x^2 + 9x$

$$0 = x(x+9)$$

$$\begin{array}{c} \swarrow \\ x=0 \end{array}$$

$$\begin{array}{c} \searrow \\ x+9=0 \\ x+9-9=-9 \\ x=-9 \end{array}$$

$\therefore x$ -intercepts are
 $x = 0$ or
 $x = -9$.

c) $y = x^2 + 9x - 36$

$$0 = (x+12)(x-3)$$

$\therefore x$ -intercepts
are $x = -12$
or $x = 3$

d) $y = \boxed{4x^2 + 20x + 9}$ (36)

$$0 = 4x^2 + 18x + 2x + 9 \quad 18, 2$$

$$0 = 2x(2x+9) + 1(2x+9)$$

$$0 = (2x+9)(2x+1)$$

$$\begin{array}{c} \swarrow \\ 0 = 2x+9 \end{array}$$

$$-9 = 2x+9-9$$

$$-9 = 2x$$

$$-\frac{9}{2} = \frac{2x}{2}$$

$$-\frac{9}{2} = x$$

$$\begin{array}{c} \searrow \\ 2x+1=0 \end{array}$$

$$2x+1-1=-1$$

$$2x = -1$$

$$\frac{2x}{2} = -\frac{1}{2}$$

$$x = -\frac{1}{2}$$

$\therefore x$ -intercepts are $x = -\frac{1}{2}$ or
 $x = -\frac{9}{2}$

e) $y = \boxed{3x^2 - 12x + 4}$ (12)

$$-12, 7$$

$$0 = 3x^2 - 12x - x + 4$$

$$0 = 3x(x-4) - 1(x-4)$$

$$0 = (x-4)(3x-1)$$

$\therefore x$ -intercepts are $x = 4$

$$\text{or } x = \frac{1}{3}$$