

Factoring Trinomials

Remember that factoring is the opposite of multiplying.

Let's **LOOK** for a pattern...

Using Photomath, evaluate each original expression, then write the factored form.

Original Expression	Factored Form (the answer)
$x^2 + 3x + 2$	$(x + 2)(x + 1)$
$x^2 + 4x + 3$	
$x^2 + 5x + 4$	
$x^2 + 5x + 6$	
$x^2 + 7x + 6$	
$x^2 + 10x + 21$	
$x^2 - 10x + 24$	
$x^2 - 13x + 36$	
$x^2 - 15x + 56$	
$x^2 - 4x - 5$	
$x^2 - 3x - 10$	
$x^2 - 3x - 28$	

Can you explain the pattern in these examples? Write your thoughts below.

Example 1

Factor each expression, if possible.

a) $x^2 + 10x + 21$

b) $x^2 + 13x + 42$

c) $x^2 + 18x + 72$

d) $x^2 - 15x + 54$

Opportunity to Learn

Use this IXL page to master the concept we discussed above. Earn a “Smart Score” of 90% or better. To follow links, go to Edsby and view this page as PDF file.

P.3 Factor quadratics with a leading coefficient of 1