

Graphing Quadratics Using the Intercepts and Vertex

Quadratic Relations Concept Map

Recall

Earlier this semester we learned how to graph quadratic relations given in the form $y = a(x - r)(x - s)$. The r and s values represent the x -intercepts – where the parabola crosses the x -axis.

Try graphing the following relation: $y = (x - 3)(x + 1)$

- 1 x -intercepts are 3 and -1
- 2 average intercepts to get x -value of vertex

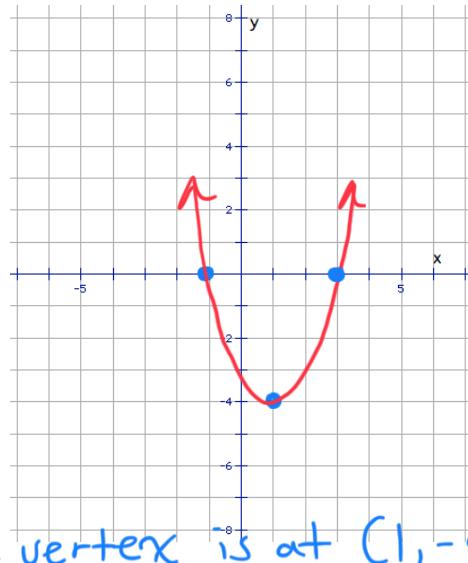
$$h = \frac{r+s}{2}$$

$$h = \frac{3+(-1)}{2}$$

$$= \frac{2}{2}$$

$$= 1$$

Example 1


- 3 now substitute to get y -value of vertex:

$$y = (x - 3)(x + 1)$$

$$k = (1 - 3)(1 + 1)$$

$$= (-2)(2)$$

$$= -4$$

\therefore vertex is at $(1, -4)$

h k

Graph each relation by factoring (do not complete the square).

a) $y = x^2 + 8x + 7$

$$y = (x + 7)(x + 1)$$

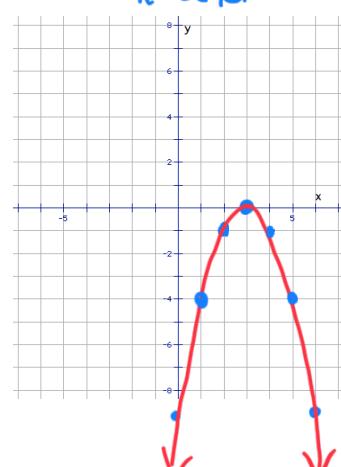
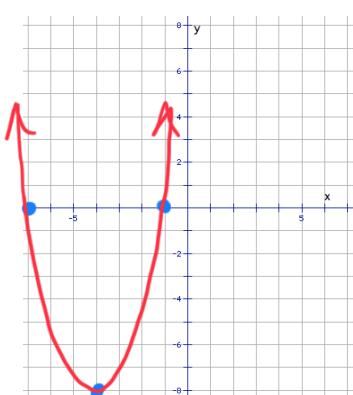
\therefore x -ints are -7 and -1

$$h = \frac{-7 + (-1)}{2}$$

$$= \frac{-8}{2}$$

$$= -4$$

b) $y = -x^2 + 6x - 9$



$$y = -(x^2 - 6x + 9)$$

$$y = -(x - 3)(x - 3)$$

\therefore x -int is 3

* only one intercept!

* this means vertex is on x -axis

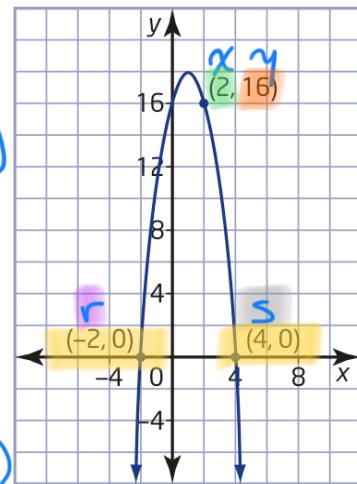
- * need more points... hmm...
- * note "a" value is -1
- * so parabola opens down with regular step pattern!

Example 2

Find the equation of the relation from the information given in the graph.

- * Hmm... no vertex given. Cannot use $y = a(x-h)^2 + k$ form.
- * Intercepts given. Use $y = a(x-r)(x-s)$ form!

Sub what we know!


$$y = a(x-r)(x-s)$$

$$16 = a(2 - (-2))(2 - 4)$$

$$16 = a(2 + 2)(-2) \rightarrow \frac{16}{-8} = \frac{a(-8)}{-8}$$

$$16 = a(4)(-2)$$

$$16 = a(-8)$$

$$\therefore \text{equation is } y = -2(x+2)(x-4)$$

To commemorate the 100th anniversary of the Newtonville Fair, an entrance arch will be built. The design engineer uses the equation $h = -d^2 + 16$ to model the arch, where h is the height, in metres, above the ground and d is the horizontal distance, in metres, from the centre of the arch.

- How wide and how tall is the arch?
- For what values of d is the relation valid? Explain.
- If a width of 2.5 m is needed per line-up at the entrance, how many line-ups can there be?

a) the arch is 16 metres tall (given by "k" value in equation).

$$h = -d^2 + 16$$

$$0 = -d^2 + 16$$

$$0 = -d^2 + 16$$

$$0 = d^2 - 16$$

$$0 = (d-4)(d+4)$$

$$\therefore \text{intercepts are } 4 \text{ and } -4$$

b) $-4 \leq d \leq 4$ (between -4 and 4... outside this span the arch does not exist)


c) 2.5 m per line...

Opportunity to Learn

Complete all questions in the handout that accompanies this lesson.

$$\dots 2.5 + 2.5 + 2.5 = 7.5 \dots$$

... so 3 lineups will fit!

