

Getting Ready for Quadratic Expressions

Quadratic Relations Concept Map

Classifying Polynomials

You can classify a polynomial by the number of terms.

Terms in a polynomial are separated by _____.

A polynomial with a single term is a _____.

A polynomial with two terms is a _____.

A polynomial with three terms is a _____.

Example 1

Classify each polynomial by its number of terms.

Polynomial	# of Terms	Classification
$2x^2 + 6$		
$5x$		
$5x^2 + 6x - 7$		
$3xy + 5$		
19		

You can also classify a polynomial by its degree.

The degree of a single term is the _____ on its variables.

Example 2

Determine the degree of each term.

Monomial	Degree of term
$5x^2$	
$3x^2y^3$	
$8y$	
$7xy^3$	
19	

The degree of an entire polynomial is the _____ of any of its terms.

Example 3

State the degree of each polynomial.

Polynomial	Degree of polynomial
$2abc$	
$7x^3 + x$	
$3x^2 + 5x - 7$	
$7k^2m + 15k^3m^2 - 6km^2$	

Operations with Polynomials

To add or subtract polynomials, _____ the value outside the brackets. Then collect _____.

Example 3

Simplify.

a) $(2x^2 + 3x - 5) + (7x^2 - 6x - 2)$

b) $(4a^2 + 5ab - 9b^2) - (7a^2 - 6ab + 2b^2)$

The Product of a Monomial and a Polynomial

The _____ allows us to expand an algebraic expression.

When _____, multiply the term outside the brackets by each term inside the brackets.

Example 4

Expand using the distributive property.

a) $2(x + 3)$

b) $2x(x + 1)$

c) $-a(3a + 5)$

Factors

_____ of a number are numbers that divide evenly into something.

For example, the factors of _____ are _____, _____, _____, and _____.

To find the _____ of a _____ of a

pair of numbers, express each number as a product of its prime factors.

Example 5

Use prime factors to find the greatest common factor of each pair of numbers.

a) 12 and 18

The GCF is _____.

b) 36 and 60

The GCF is _____.

Opportunity to Learn

Use these IXL pages to master each of the concepts we discussed above. Earn a “Smart Score” of 80% or better. To follow links, go to our class website and view this page as PDF file.

[O.1 Polynomial vocabulary](#) [O.4 Add and Subtract Polynomials](#)

[O.6 Multiply a Polynomial by a Monomial](#)

[A.2 Prime Factorization](#) [A.3 Greatest Common Factor](#)