

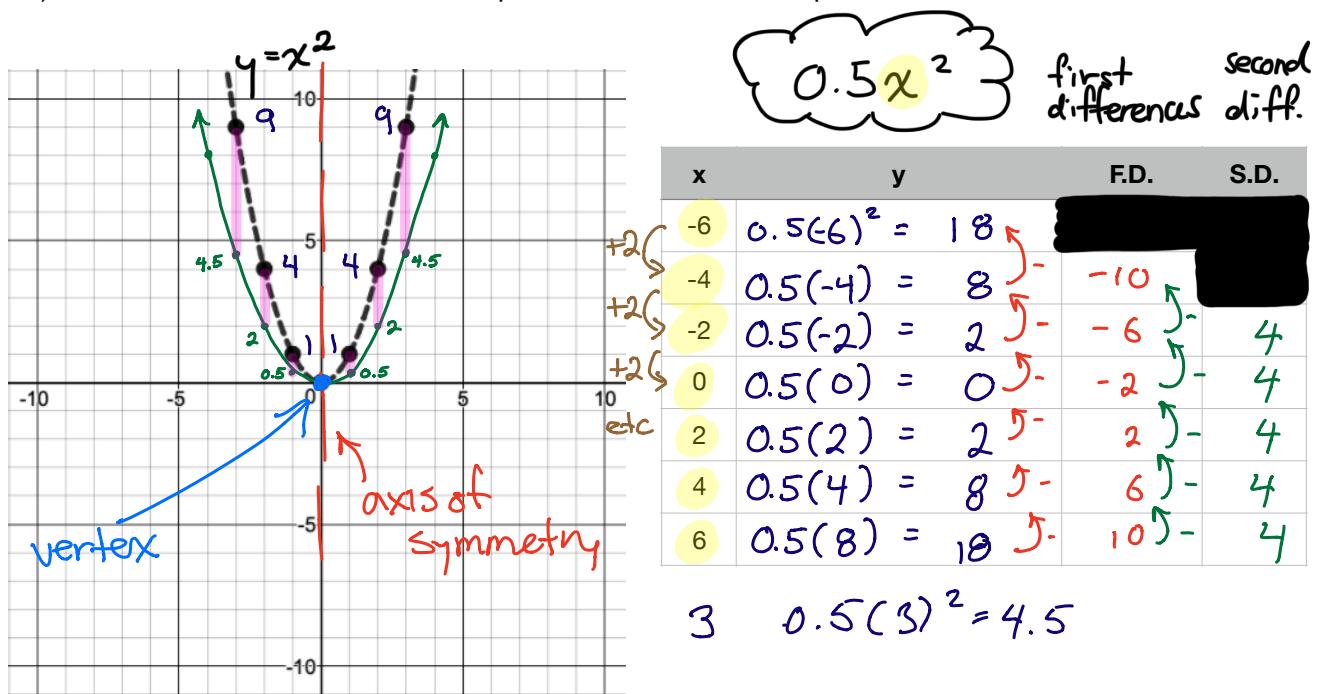
Comparing and Describing Quadratic Relations, Part II

Example 1

When the independent variable, x , is squared, and the result is multiplied by 0.5, like so:

$$y = 0.5x^2$$

- Why does the new graph appear to be wider, or compressed, compared to $y = x^2$?
- What are the characteristics of a quadratic relation when represented as a graph?
- What are the characteristics of a quadratic relation when represented as a table?



- compared to $y = x^2$, the graph of $y = 0.5x^2$ is compressed, because all of the y-values are half as large
- a compressed quadratic relation has all of the same characteristics as the parent quadratic (symmetrical, has a vertex, etcetera)
- represented as a table, a quadratic relation will always have second differences that are constant (the same)

Example 2

Consider the first differences from the relations in example 1. Do you see a pattern?

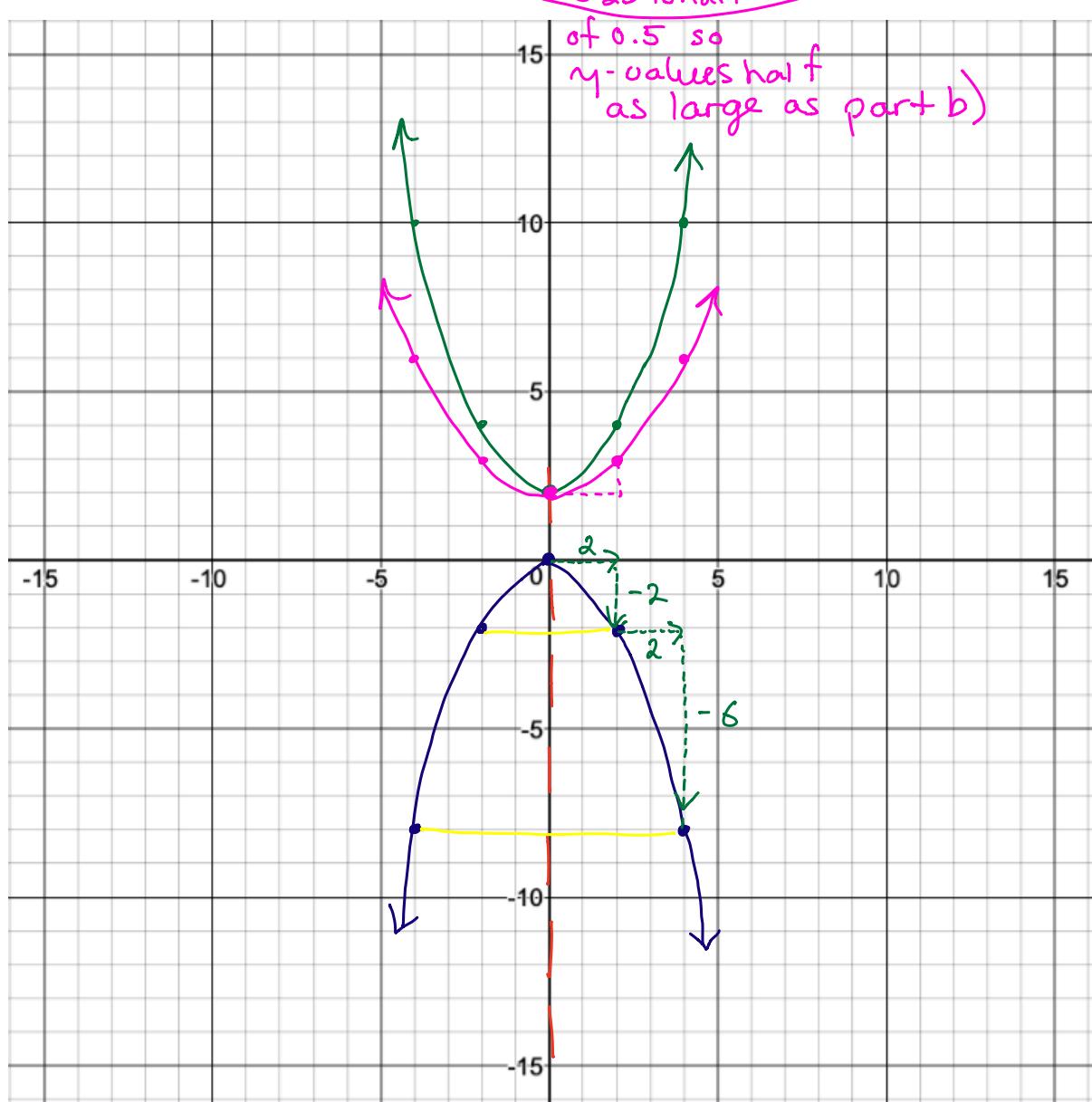
- first differences follow same pattern of decrease and increase (we can use this to plot a quadratic quickly)

Let's try applying that pattern to plot, by hand, the following relations without resorting to making a table of values first:

a. $y = -0.5x^2$

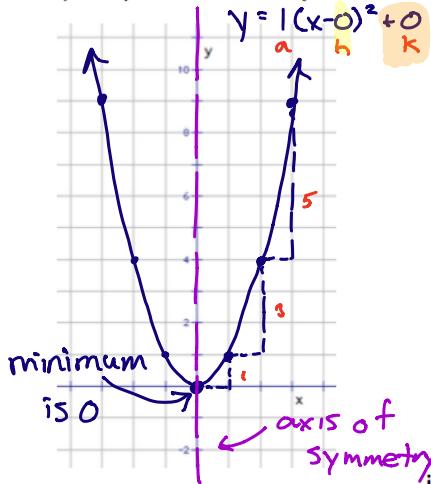
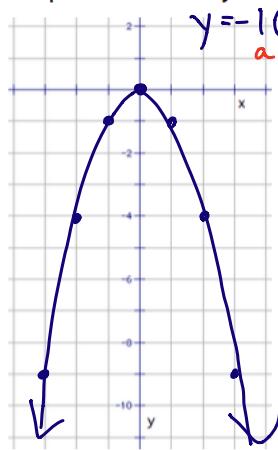
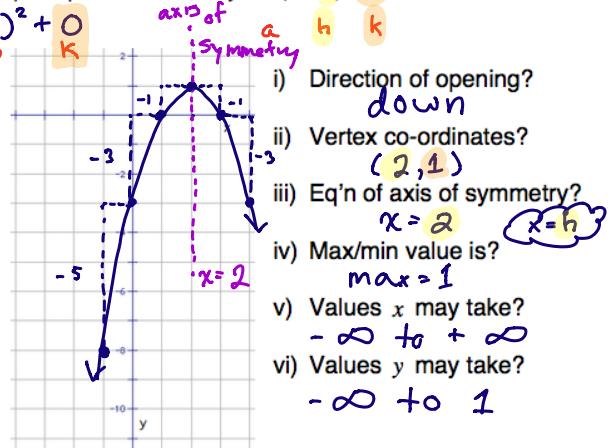
b. $y = 0.5x^2 + 2$

c. $y = 0.25x^2 + 2$



Example 3

Plot each of the following relations and analyze the relation as indicated:

a) Graph the relation $y = x^2$.b) Graph the relation $y = -x^2$.c) Graph the relation $y = -(x-2)^2 + 1$.

i) Direction of opening?

up

ii) Vertex co-ordinates?

 $(0, 0)$

iii) Eq'n of axis of symmetry?

 $x = 0$

iv) Max/min value is?

 $\min = 0 \quad \max = \infty$

v) Values x may take?

 $-\infty \rightarrow +\infty$

vi) Values y may take?

 $0 \rightarrow +\infty$

i) Direction of opening?

down

ii) Vertex co-ordinates?

 $(0, 0)$

iii) Eq'n of axis of symmetry?

 $x = 0$

iv) Max/min value is?

 $\min = -\infty \quad \max = 0$

v) Values x may take?

 $-\infty \rightarrow +\infty$

vi) Values y may take?

 $-\infty \rightarrow 0$

Opportunity to LearnPart A

Given what you have summarized about how the values of a , h , and k transform a quadratic in the form:

$$y = a(x - h)^2 + k$$

... try writing an equation for each quadratic described below.

- a. A parabola with its vertex at $(2, 3)$, opening up, with no vertical stretch.
- b. A parabola with its vertex at $(-3, 0)$, opening down, with a vertical stretch of factor 2.